Sabtu, 22 Oktober 2011

PELUANG

Ruang sampel adalah himpunan semua hasil yang mungkin muncul pada suatu percobaan.
Ruang sampel dilambangkan dengan huruf S.
Titik sampel adalah masing-masing anggota dari ruang sampel.
Contoh:

    1. Pada pelemparan satu buah uang logam
Ruang sampelnya ada dua yaitu S={angka, gambar}.
Titik sampelnya bisa angka, atau bisa gambar saja.

    2. Pada pelemparan satu buah dadu
Ruang sampelnya adalah S={1,2,3,4,5,6}.
"ingat ruang sampel adalah himpunan, jadi ada tanda kurung kurawal"
"dan nama himpunannya adalah S."
"S maksudnya SAMPEL".
Adapun titik sampelnya adalah bisa mata dadu 1, mata dadu 2, 3, dst...

Gampang khan...

Banyak anggota dari ruang sampel dinyatakan dengan n(S).
"ingat, lambang n berarti banyaknya"
Contoh:
Banyaknya anggota ruang sampel dari pelemparan satu buah dadu yaitu:
n(S)=6.
Alasan, karena ruang sampel dari pelemparan 1 buah dadu adalah,
S={1,2,3,4,5,6}
Silahkan dihitung anggota himpunan S !


Jadi kali ini kita sudah mempelajari dan memahami 2 lambang yaitu :
1. S = ruang sampel (yang adalah sebuah himpunan)
2. n(S) = banyak anggota ruang sampel

STATISTIKA

Pernah dengar kata statistika? Pasti pernah dong. Bagi kalian yang duduk di kelas 9 semester ganjil ini, pas banget tuh sedang belajar statistika di kelas. Apakah kalian sudah memahami materi statistika yang kalian pelajari? Coba ungkapkan dengan bahasamu sendiri, apa sih statistika itu? Trus, kamu tahu ga bedanya statistika dan statistik? (eit..jawabannya bukan ada yang diakhiri huruf “a” dan yang tidak lo...). kalo kalian belum tahu, wajar sih karena memang tidak semua orang mendalami bidang kajian ini walaupun peranannya dalam kehidupan kita sangat penting. Yuk kita diskusi lebih banyak tentang istilah-istilah dalam statistika dan kegunaannya dalam kehidupan sehari-hari.
Hal pertama agar bisa memahami materi statistika, tentu saja kalian harus tahu pengertian statistika itu sendiri.

Salah satu definisi menyebutkan bahwa statistika adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut.
Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.

Pengumpulan Data

Data adalah sesuatu yang dapat memberikan gambaran tentang suatu keadaan atau persoalan. Data berbentuk bilangan disebut data kuantitatif sedangkan data yang berbentuk bukan bilangan disebut data kualitatif. Data kuantitatif terdiri atas data diskrit dan data kontinu.Data diskrit adalah data yang diperoleh dengan membilang, mencacah, atau menghitung, misalnya data jumlah penduduk dan data jumlah anak dalam keluarga. Adapun data kontinu adalah data yang diperoleh dari hasil mengukur, misalnya data tinggi badan dan data berat badan.
Jangkauan = data terbesar - data terkecil

Penyajian Data

Penyajian Data Menggunakan Tabel

Tabel Frekuensi Data Tunggal
Penyajian data tunggal dalam bentuk tabel dinamakan distribusi frekuensi data tunggal. Agar pembahasan lebih jelas, perhatikan contoh berikut.
Pada sensus penduduk suatu desa didapatkan data jumlah anak yang dimiliki oleh tiap keluarga sebagai berikut.

1
4
3
4
5
4
3
6
1
2
2
3
2
4
1
6
5
3
4
3
4
4
5
4
4
4
6
5
4
4
2
4
3
3
2
4
2
3
4
1
Data di atas belum tersusun secara teratur sehingga sulit untuk mengetahui informasi data itu, seperti jumlah keluarga yang mempunyai 4 anak dan keluarga yang mempunyai anak lebih dari 3. Agar lebih mudah dipahami, data tersebut disajikan dalam tabel frekuensi data tunggal. Pada tabel frekuensi data tunggal, tiap-tiap baris pada kolom nilai atau data hanya memuat satu nilai atau data. Tabel dibagi menjadi 3 kolom. Kolom pertama adalah datanya. Kolom kedua adalah turus, yaitu cara mencacah data menggunakan simbol I. setiap menemukan data yang bersesuaian dengan data yang diperoleh. Kolom ketiga adalah frekuensi, yaitu jumlah turus atau simbol I pada data tertentu.

Jumlah anak Turus
Frekuensi
1
////
4
2
//////
6
3
////////
8
4
///////////////
15
5
////
4
6
///
3
jumlah

40
  • Tabel Frekuensi Data yang Dikelompokkan
Penyajian data berkelompok dalam bentuk tabel dinamakan distribusi frekuensi data berkelompok. Perhatikan contoh berikut.
Nilai ulangan Matematika siswa kelas IX suatu SMP adalah sebagai berikut.

44
54
85
92
73
99
91
96
74
75
70
57
83
49
57
52
64
73
82
90
70
89
91
67
52
64
73
82
59
65
79
82
89
53
52
50


Dari data terlihat bahwa nilai teninggi dan terendah mempunyai range (angkauan) yang besar, yaitu 99 - 44 = 55. Jika data tersebut disajikan menggunakan tabel frekuensi data tunggal menjadi tidak praktis maka perlu disajikan menggunakan pengelompokan data. Pada tabel frekuensi data berkelompok, tiap-tiap baris pada kolom nilai atau data memuat beberapa nilai atau data. Istilah-istilah yang harus dipahami dalam pembuatan tabel frekuensi data yang dikelompokkan adalah sebagai berikut.

  1. Kelas interval : pengelompokan beberapa nilai atau data.
  2. Banyak kelas interval : banyaknya pengelompokan dari seluruh data atau nilai yang ada.
  3. Panjang interval : banyaknya data pada suatu kelas interval. Panjang interval untuk semua kelas interval pada suatu tabel harus sama.
Dengan pengertian istilah-istilah di atas diperoleh tabel frekuensi data yang dikelompokkan untuk nilai ulangan matematika siswa kelas IX adalah sebagai berikut.

Nilai
Turus
Frekuensi
44-51
///
3
52-59
////////
8
60-67
////
4
68-75
//////
6
76-83
/////
5
84-91
///////
7
92-99
///
3
jumlah

36
Tabel frekuensi di atas memiliki
a. banyak kelas interval (pengelompokan) = 7 ;
b. panjang kelas interval (banyak data pada satu interval) = 8.
1. Pada penyajian data dalam bentuk tabel frekuensi data yang dikelompokkan, data terkecil dan terbesar harus masuk dalam kelas interval.
2. Banyak kelas interval dapat ditentukan menggunakan aturan Sturgess, yaitu banyak kelas interval = I + 3,3 log n dengan n adalah banyak data.

Penyajian Data Menggunakan Diagram

a. Piktogram
Piktogram adalah suatu cara untuk menampilkan besar data menggunakan gambar yang sesuai dengan datanya. Cara ini paling sederhana dan jelas untuk menyajikan suatu data. Salah satu kelemahan dalam penggunaan piktogram adalah sulitnya membedakan setengah dan satu pertiga gambar atau jumlahnya tidak dapat diwakili dengan satu unit gambar sehingga penggunaan piktogram sangat terbatas.
b. Diagram Batang
Diagram batang adalah cara menyajikan data dalam bentuk batang-batang. Tiap batang lebarnya sama, sedangkan tinggi batang menyatakan frekuensi dari data yang bersangkutan. Untuk membuat diagram batang diperlukan sumbu mendatar dan sumbu tegak yang berpotongan tegak lurus. Sumbu mendatar (horizontal) menunjukkan jenis kategorinya, sedangkan sumbu tegak (vertikal) menunjukkan frekuensinya. Skala sumbu mendatar tidak harus sama dengan skala sumbu tegak. Letak batang yang satu dengan yang lain dibuat terpisah.
c. Diagram Lingkaran
Penyajian data juga dapat dilakukan dengan menggunakan lingkaran. Daerah lingkaran menggambarkan keseluruhan data. Data disajikan dengan menggunakan juring atau sektor, di mana besar sudut pusat dari juring sesuai dengan perbandingan setiap data terhadap keseluruhan data.
d. Diagram Garis
Diagram garis biasanya digunakan untuk menyajikan data yang diperoleh dari waktu ke waktu secara teratur dalam interval waktu tertentu. Diagram garis digunakan untuk mengetahui pertumbuhan/perkembangan suatu hal secara kontinu.

Ukuran Pemusatan

Ukuran pemusatan sekelompok data adalah nilai atau data yang dapat mewakili sekelompok data tersebut atau sering juga disebut rata-rata. Nilai rata-rata pada umumnya mempunyai kecenderungan terletak di tengah-tengah dalam suatu kelompok data yang disusun terurut atau dengan kata lain mempunyai kecenderungan memusat. Misalkan suatu data tinggi badan beberapa siswa (dalam cm) adalah sebagai berikut.
135 140 150 150 150 155 157 160
Dari data di atas tampak bahwa sebagian besar tinggi siswa di sekitar 150. Dengan demikian, 150 disebut ukuran pemusatan dari data tinggi badan siswa. Ada beberapa jenis ukuran pemusatan (ukuran tendensi sentral), antara lain mean. modus. dan median.

Mean (Rataan Hitung)

Mean dari sekumpulan data adalah jumlah seluruh data dibagi banyaknya data. Mean biasanya dilambangkan dengan Jika data terdiri atas n, yaitu x1, x2, x3, ...xn maka mean dari data tersebut dapat dirumuskan sebasai berikut.

Gambar:31.jpg

Modus

Data yang kalian peroleh biasanya bervariasi, ada yang muncul sekali ada yang muncul lebih dari sekali. Data yang paling sering muncul disebut modus. Modus adalah data yang paling sering muncul atau frekuensinya paling tinggi. Pengertian lain adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.

Median

Median adalah nilai yang terletak di tengah dari data yang terurut. Jika banyak data ganjil, median adalah nilai paling tengah dari data yang sudah diurutkan. Jika banyak data genap, median adalah mean dari dua bilangan yang di tengah setelah data diurutkan.
Median adalah nilai tengah setelah data terurut naik. Pengeritan lain adalah nilai tengah dari data yang telah diurutkan menurut besarnya. Dengan ketentuan: Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.

Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5         n = 8
Jawab :
Rata-rata = 5+6+7+8+9+9+12+13 = 8,625

                             8
Median
Data diurutkan terlebih dahulu menjadi
5 6 7 8 9 9 12 13
median = 8 + 9 = 8,5
                 2
Modus = 9 (sering banyak muncul)

Kuartil

Selain ketiga ukuran pemusatan data di atas, terdapat beberapa ukuran pemusatan lagi. Salah satunya adalah kuartil. Kuartil adalah nilai ukuran yang membagi data yang sudah terurut menjadi empat bagian yang sama. Contoh suatu data terurut seperti berikut.
Data yang terdapat pada batas pengelompokan pertamadisebut kuartil bawah (Q1), batas pengelompokan kedua disebut kuartil tengah (Q2), dan batas pengelompokan ketiga disebut kuartil atas (Q3).

Gambar:32.jpg
Data yang terdapat pada batas pengelompokan pertamadisebut kuartil bawah (Q1), batas pengelompokan kedua disebut kuartil tengah (Q2), dan batas pengelompokan ketiga disebut kuartil atas (Q3).
Untuk menentukan nilai-nilai kuartil, kita tentukan nilai kuartil tengah (Q2) terlebih dahulu. Nilai Q2 adalah median dari data tersebut. Selanjutnya, seluruh data yang berada di sebelah kiri Q2, digunakan untuk mencari Q1. Nilai Q1 adalah median dari data sebelah kiri Q2, sedangkan Q3 adalah median dari seluruh data di sebelah kanan Q2 Selain dengan cara di atas, nilai kuartil dapat ditentukan dengan menggunakan rumus berikut.
Gambar:33.jpg

Histogram dan Poligon Frekuensi

Histogram dan Poligon Frekuensi adalah dua grafik yang menggambarkan distribusi frekuensi. Histogram terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
Poligon Frekuensi adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.

Pengertian Sampel dan Populasi

Dalam pengumpulan data, jika objek yang diteliti terlalu banyak atau terlalu luas maka sering kali orang menggunakan sebagian saja dari seluruh objek yang diteliti sebagai wakil. Sebagai objek yang dipilih itu disebut sampel, sedangkan seluruh objek tersebut dinamakan populasi. Untuk memahami pengertian populasi dan sampel, perhatikan contoh berikut.
“ucok ingin membeli jeruk pada suatu kios buah di pasar. Agar yakin semua jeruk yang dibelinya manis, ucok tidak ingin mencicipi satu per satu jeruk yang ada di situ. ucok dapat mencicipi salah satu jeruk yang ada dalam keranjang untuk memastikan semua jeruk dalam keranjang rasanya manis”.
Dalam hal ini, jeruk yang dicicipi ucok disebut sampel dan semua jeruk dalam keranjang disebut populasi. Populasi adalah himpunan semua objek yang akan diteliti, sedangkan sampel adalah himpunan bagian dari populasi yang dijadikan pengamatan.

Referensi

  • Erlangga
  • Tiga Serangkai

BANGUN RUANG SISI LENGKUNG

A. Tabung (Silinder)

Perhatikan gambar di samping. Bentuk apakah yang dimanfaatkan alat musik tersebut. Mengapa drum selalu berbentuk tabung?

1. Unsur-unsur Tabung dan Melukis Jaring-jaring Tabung

Sebelum kita mempelajari lebih lanjut mengenai tabung, coba sebutkan benda-benda di sekitar kalian yang berbentuk tabung. Berikut ini akan kita pelajari berbagai hal tentang tabung.
a. Unsur-unsur Tabung
Dapatkah kalian menyebutkan unsur-unsur sebuah tabung? Agar dapat menjawabnya, lakukanlah kegiatan berikut.
Dari kegiatan tersebut kita akan dapat mengetahui unsur-unsur tabung. Salin dan isikan unsur-unsur itu pada tempat yang tersedia.
a. Tinggi tabung ....
b. Jari-jari alas tabung ... dan jari-jari atas tabung ....
c. Diameter alas tabung ... dan diameter atap tabung ....
d. Alas dan atap tabung berupa bidang datar yang berbentuk ....
e. Selimut tabung berupa bidang lengkung. Apabila dibuka dan dilembarkan berbentuk ....
b. Jaring-jaring Tabung
Dari kegiatan sebelumnya kita dapat mengetahui bahwa tabung atau silinder tersusun dari tiga buah bangun datar, yaitu:
a. dua buah lingkaran sebagai alas dan atap silinder,
b. satu buah persegi panjang sebagai bidang lengkungnya atau selimut tabung.
Rangkaian dari ketiga bidang datar itu disebut sebagai jaring-jaring tabung. Coba kalian gambarkan jaring-jaring dari kaleng tersebut. Apakah kalian mendapatkan jaring-jaring tabung seperti gambar berikut?
Image:bangun_Ruang_SS_Lengkung_4.jpg
Gambar 2.3 menunjukkan jaring-jaring sebuah tabung dengan jari-jari alas dan atapnya yang berupa lingkaran adalah r dan tinggi tabung adalah t.
Jaring-jaring tabung terdiri atas:
a. Selimut tabung yang berupa persegi panjang, dengan panjang selimut sama dengan keliling lingkaran alas tabung 2πr dan lebar selimut sama dengan tinggi tabung t.
b. Dua lingkaran dengan jari-jari r.

2. Menghitung Luas Selimut dan Volume Tabung

Sebuah benda berbentuk tabung memiliki jari-jari r dan tinggi t. Jika kalian ingin membuat tabung dari kertas yang ukurannya tepat sama dengan ukuran benda tersebut, berapakah luas kertas yang kalian perlukan? Untuk menjawabnya, pelajari uraian materi berikut.
a. Luas Selimut
Dengan memerhatikan gambar 2.3, kita dapat mengetahui bahwa luas seluruh permukaan tabung atau luas sisi tabung merupakan jumlah dari luas alas ditambah luas selimut dan luas atap. Untuk lebih jelasnya perhatikan gambar jaring-jaring tabung sekali lagi.
Sehingga kita dapatkan rumus:
Image:bangun_Ruang_SS_Lengkung_6.jpg
b. Volume Tabung
Tabung merupakan pendekatan dari prisma segi-n, dimana n mendekati tak hingga. Artinya, jika rusuk-rusuk pada alas prisma diperbanyak maka akan membentuk sebuah tabung dimana hanya mendekati satu bidang alas, satu bidang atas dan satu sisi tegak. Karena alas dan tutup tabung berbentuk lingkaran maka volume tabung adalah perkalian luas daerah lingkaran alas dengan tinggi tabung.
Image:bangun_Ruang_SS_Lengkung_7.jpg

B. Kerucut

1. Unsur-unsur Kerucut dan Melukis Jaring-jaring Kerucut

Perhatikan gambar di samping. Pernahkan kalian melihat bangunan ini? Jika kita cermati bentuknya, bangunan tersebut merupakan refleksi dari bangun ruang dengan sisi lengkung yaitu kerucut.
a. Unsur-unsur Kerucut
Untuk lebih memahami unsur-unsur kerucut, dapat kita ilustrasikan seperti pada gambar 2.5 berikut.
Dengan mengamati gambar tersebut, kita dapat mengetahui unsur-unsur kerucut dengan melengkapi pernyataan berikut.
1) Tinggi kerucut = ….
2) Jari-jari alas kerucut = ….
3) Diameter alas kerucut = ….
4) Apotema atau garis pelukis = ….
b. Jaring-jaring Kerucut
Berdasarkan kegiatan dan gambar di atas kita ketahui bahwa kerucut tersusun dari dua bangun datar, yaitu lingkaran sebagai alas dan selimut yang berupa bidang lengkung (juring lingkaran). Kedua bangun datar yang menyusun kerucut tersebut disebut jaring-jaring kerucut. Perhatikan gambar berikut.
Gambar 2.6(a) menunjukkan kerucut dengan jari-jari lingkaran alas r, tinggi kerucut t, apotema atau garis pelukis s. Terlihat bahwa jaring-jaring kerucut terdiri atas dua buah bidang datar yang ditunjukkan gambar 2.6 (b) yaitu:
a. selimut kerucut yang berupa juring lingkaran dengan jari-jari s dan panjang busur 2πr,
b. alas yang berupa lingkaran dengan jari-jari r.

2. Menghitung Luas Selimut dan Volume Kerucut

Dapatkah kalian menghitung luas bahan yang diperlukan untuk membuat kerucut dengan ukuran tertentu? Perhatikan uraian berikut.
a. Luas Selimut
Dengan memerhatikan gambar, kita dapat mengetahui bahwa luas seluruh permukaan kerucut atau luas sisi kerucut merupakan jumlah dari luas juring ditambah luas alas yang berbentuk lingkaran. Untuk lebih jelasnya perhatikan jaring-jaring kerucut ini.
Image:bangun_Ruang_SS_Lengkung_14.jpg
Jadi luas juring TAA1 atau luas selimut kerucut dapat ditentukan.
Image:bangun_Ruang_SS_Lengkung_15.jpg
Karena luas selimut kerucut sama dengan luas juring TAA1 maka kita dapatkan:
Image:bangun_Ruang_SS_Lengkung_16.jpg
Sedangkan luas permukaan kerucut
= luas selimut + luas alas kerucut
= πrs + πr2
= πr (s + r)
Jadi
Image:bangun_Ruang_SS_Lengkung_17.jpg
dengan r = jari-jari lingkaran alas kerucut
           s = garis pelukis (apotema)
b. Volume Kerucut
Kerucut dapat dipandang sebagai limas yang alasnya berbentuk lingkaran. Oleh karena itu kita dapat merumuskan volume kerucut sebagai berikut.
Image:bangun_Ruang_SS_Lengkung_18.jpg
Hubungan antara r, t dan apotema (s) adalah s2 = r2 + t2

c. Luas Selimut dan Volume Kerucut Terpancung
Image:bangun_Ruang_SS_Lengkung_21.jpg1) Luas selimut
Luas selimut kerucut terpancung adalah luas kerucut besar dikurangi luas selimut kerucut kecil. Kerucut besar ACC' mempunyai tinggi t1, jari-jari r, dan apotema s1. Sedangkan kerucut kecil ABB' mempunyai tinggi t2, jari-jari r2, dan apotema s2. Luas selimut kerucut terpancung adalah luas selimut kerucut besar dikurangi luas selimut kecil.

C. Bola

Perhatikan gambar di samping. Mengapa dalam olahraga bowling, benda yang dilemparkan berbentuk bola? Apakah kelebihannya sehingga benda-benda berbentuk bola digunakan dalam olahraga sepak bola, bola voli, bowling, dan billiard? Agar dapat lebih mengenal bangun bola, pelajarilah materi berikut ini.

1. Unsur-unsur Bola

Perhatikan gambar berikut.
Suatu lingkaran diputar setengah putaran dengan diameter sebagai sumbu putarnya akan diperoleh bangun ruang seperti gambar 2.10 (b). Bentuk bangun yang demikian disebut bola dengan jari-jari bola r dan tinggi d.

2. Menghitung Luas Selimut dan Volume Bola

Sebelum mempelajari luas selimut dan volume bola, lakukanlah kegiatan berikut.
Ternyata dari kegiatan di atas kita dapat merumuskan luas selimut atau permukaan (sisi) bola. Jika jari-jari alas tabung tersebut r dan tingginya sama dengan diameter d, maka luas selimut atau sisi bola dengan jari-jari r adalah:
Image:bangun_Ruang_SS_Lengkung_28.jpg

D. Hubungan Volume Bangun Ruang Sisi Lengkung dengan Jari-jari

Pada rumus mencari volume bangun ruang sisi lengkung, semua tergantung pada unsur-unsur bangun tersebut, misalnya jari-jari dan tinggi bangun tersebut.

1. Perbandingan Volume Tabung, Kerucut, dan Bola karena Perubahan Jari-jari

a. Perbandingan Volume Tabung
Apabila ada dua buah tabung dengan tinggi yang sama, tetapi jari-jari berbeda, maka perbandingan kedua volume tabung sama dengan perbandingan kuadrat masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_33.jpg
Image:bangun_Ruang_SS_Lengkung_34.jpg
b. Perbandingan Volume pada Kerucut
Apabila ada dua buah kerucut dengan tinggi sama, tetapi jari-jari alasnya berbeda, maka perbandingan volume kedua kerucut dengan perbandingan kuadrat masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_35.jpg
c. Perbandingan Volume pada Bola
Apabila ada dua buah bola dengan jari-jari yang berbeda, maka perbandingan volumenya sama dengan perbandingan di pangkat tiga dan masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_36.jpg
Image:bangun_Ruang_SS_Lengkung_37.jpg

2. Selisih Volume Tabung, Kerucut, dan Bola karena Perubahan Jari-jari

a. Selisih Volume pada Tabung
Sebuah tabung dengan jari-jari lingkaran alas r1 dan tinggi t diperbesar sehingga jari-jari lingkaran alas menjadi r2 dengan r2 > r1 dan tinggi tetap. Maka berlaku:
Image:bangun_Ruang_SS_Lengkung_40.jpg
b. Selisih Volume pada Kerucut
Sebuah kerucut dengan jari-jari lingkaran alas r1 dan tinggi t diperbesar sehingga jari-jari lingkaran alas menjadi r2 dengan r2 > r1 dan tinggi tetap. Berlaku:
Image:bangun_Ruang_SS_Lengkung_41.jpg
Jadi selisih volumenya:
Image:bangun_Ruang_SS_Lengkung_42.jpg
dengan r1 = jari- jari awal r2 = jari-jari setelah diperbesar Bagaimana jika jari-jari kerucut diperpanjang sebesar k satuan? Ternyata berlaku r2 = r1 + k, sehingga:
Image:bangun_Ruang_SS_Lengkung_43.jpg
c. Selisih Volume pada Bola
Sebuah bola dengan jari-jari r1 diperbesar sehingga jarijarinya menjadi r2 dengan r2 > r1. Berlaku:
Image:bangun_Ruang_SS_Lengkung_44.jpg
Jadi selisih volumenya:
Image:bangun_Ruang_SS_Lengkung_45.jpg
dengan r1 = jari-jari awal, r2 = jari-jari setelah diperbesar
Bagaimana jika jari-jari bola diperpanjang sebesar k satuan? Ternyata berlaku r2 = r1 + k, sehingga:
Image:bangun_Ruang_SS_Lengkung_46.jpg

Kamis, 21 Juli 2011

Kesebangunan

Dua Bangun Datar yang Sebangun

Perhatikan Gambar Persegi panjang ABCD dan PQRSmempunyai sisi-sisi yang bersesuaian, yaitu
  Gambar:kotak.jpg Gambar:kotak2.jpg
Gambar:1.jpg
Panjang sisi kedua persegi panjang tersebut mempunyai perbandingan yang senilai.
Gambar:2.jpg

Dengan demikian, sisi-sisi yang bersesuaian dari kedua persegi panjang mempunyai perbandingan yang sama, yaitu

Gambar:3.jpg
Keempat sudut dari persegi panjang ABCD dan PQRS adalah 90" sehingga kedua persegi panjang tersebut mempunyai sudut-sudut yang bersesuaian sama besar, yaitu
ﮮ A = ﮮP, ﮮ B = ﮮQ, ﮮC = ﮮ R. dan ﮮ D = ﮮ S

Dapat dikatakan bahrva persegi panjang ABCD sebangun dengan persegi panjang PORS dan ditulis ABCD ~ PQRS.
Dua bangun datar dikatakan sebangun jika memenuhi dua syarat berikut.

  1. Panjang sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai.
  2. Sudut-sudut yang bersesuaian sama besar.

Dua Bangun yang Sama dan Sebangun

Perhatikan dua lembar uang kertas yang nilainya sama. Misalnya Rp.5.000.00. Apakah uang tersebut panjang dan lebarnya sama?

Coba hitunglah perbandingan dari masing-masing sisi-sisinya. Kamu akan memperoleh nilai perbandingan sisi-sisinya sama dengan 1.
Dari hasil perbandingan di atas diperoleh :

  1. sisi-sisi yang bersesuaian dari uangtersebut sarna panjang.
  2. sudut-sudut yang bersesuaian dari uang tersebut sama besar (90o).
Jadi, kedua uang tersebut mempunyai bentuk dan ukuran yang sama. Bangun-bangun yang mempunyai bentuk dan ukuran yang sama disebut bangun-bangun yang kongruen, yakni bangun-bangun yang sama dan sebangun. Bangun-bangun yang kongruen jika diimpitkan akan saling menutupi satu sama lain.

Dua bangun bersisi lurus dikatakan kongruen jika :

  1. sisi-sisi yang bersesuaian dari bangun tersebut sama panjang:
  2. sudut-sudut yang bersesuaian dari bangun tersebut sama besar

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Bangun yang Sebangun

Kita dapat menggunakan sifat dari dua bangun datar yang sebangun. yaitu perbandingan panjang sisi yang bersesuaian senilai untuk menghitung panjang salah satu sisi yang belum diketahui dari dua bangun yang sebangun.
Contoh :
Diketahui dua bangun datar di bawah sebangun. Tentukan nilai x dan y !
Gambar:te.jpg

Jawab :
Perbandingan sisi yang bersesuaian yang diketahui adalah 21/9 = 7/3 maka sisi yang lain juga harus mempunyai perbandingan yang sama. Nilai x dan y dapat diperoleh dari perbandingan di atas, yaitu :

Gambar:5.jpg
Jadi, x = 3 cm dan y = 6 cm.



SEGITIGA-SEGITIGA YANG SEBANGUN

Syarat Segitiga-Segitiga Sebangun

Pada Gambar dibawah tampak dua segitiga, yaitu ∆ ABC dan ∆ DEF. Perbandingan panjang sisi-sisi yang bersesuaian pada kedua segitiga tersebut adalah sebagai berikut:  Gambar:segitiga.jpg Dengan demikian, diperoleh : Gambar:6.jpg
Ukurlah sudut-sudut dari kedua segitiga itu dan bandingkan hasil pengukuranmu untuk sudut-sudut yang bersesuaian, yaitu ﮮ A dengan ﮮ D. ﮮ B dengan ﮮ E, dan ﮮ C dengan ﮮF Jika pengukuranmu benar kamu akan memperoleh hasil ﮮ A = ﮮ D ﮮ B = ﮮ E.dan ﮮ C = ﮮ F.
Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai dan sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF sebangun.
Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa perbandingan panjang sisi-sisi yang bersesuaian senilai. Lakukan pengukuran panjang sisi-sisi dari kedua segitiga tersebut dan bandingkan hasil pengukuranmu untuk sisi-sisi yang bersesuaian. Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang sama dan sudut yang bersesuaian sama besar Maka ∆ ABC sebangun dengan ∆ DEF. Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa sudut-sudut yang bersesuaian sama besar.

Dari uraian di atas, dapat disimpulkan sebagai berikut.
Dua segitiga dikatakan sebangun jika memenuhi salah satu syarat berikut :

  1. Perbandingan panjang sisi-sisi yang bersesuaian senilai.
  2. Dua pasang sudut yang bersesuaian yang sama besar.

Kesebangunan Khusus dalam Segitiga Siku-Siku

Dalam segitiga siku-siku terdapat kesebangunan khusus. Perhatikan gambar di samping. Pada segitiga siku-siku di bawah.
Gambar:sigitiga 2.jpg
a AD2 = BD x CD;
b. AB2 = BD x BC;
c. AC2 = CD x CB.
Contoh :
Pada gambar di bawah diketahui AB = 6 cm dan BC. Tentukan
a. AC;
b. AD;
c. BD.
Gambar:sigitiga 3.jpg
Jawab:
a. AC2 = AB2+BC2
          = 62 + 82
          = 36+64
          = 100
    AC = √100 = 10

b. AB2 = AD x AC
      62 = AD x 10
      36 = AD x l0
     AD =36/10
           = 3,6 cm
     DC = l0 cm - 3,6cm
           = 6,4 cm
c. BD2 = AD x DC
           = 3,6 x 6,4
           = 23,04
      BD = √23,04 = 4,8 cm

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Segitiga yang Sebangun

Konsep kesebangunan dua segitiga dapat digunakan untuk menghitung panjang salah satu sisi segitiga sebangun yang belum diketahui. Coba perhatikan contoh berikut! Contoh :
Gambar:sigitiga 4.jpg Diketahui ∆ ABC sebangun dengan ∆ DEF. Tentukan EF ?

jawab:
Gambar:10.jpg

Garis-Garis Sejajar pada Sisi Segitiga

Pada Gambar Dibawah, ∆ ABC dan ∆ DEC sebangun. Berikut akan ditentukan perbandingan ruas garis dari kedua segitiga tersebut.
Perhatikan Gambar dibawah.
Gambar:sigitiga 5.jpg
Dari gambar tersebut terlihat bahwa ruas garis .DE // AB sehingga diperoleh
ﮮ ACB = ﮮ DCE (berimpit)
ﮮ CAB = ﮮ CDE (sehadap)
Karena dua sudut yang bersesuaian dari ∆ ABC dan ∆ DEC sama besar maka kedua segitiga itu sebangun. Karena sebansun maka berlaku
Gambar:11.jpg
Kedua ruas dikalikan (a + d)(c + b) sehingga diperoleh

Gambar:12a.jpg
Contoh:
Gambar:sigitiga 6.jpg Dalam ∆ PRT, PT//QS, hitunglah QR dan ST!
Jawab :
Gambar:13.jpg

Menyelesaikan Soal Cerita yang Berkaitan dengan Kesebangunan

Konsep dan sifat-sifat kesebangunan dapat digunakan untuk menyelesaikan masalah-masalah atau soal cerita yang berkaitan dengan kesebangunan. Untuk menyelesaikan soal cerita dapat dibantu dengan membuat sketsa atau gambar. Dari gambar itu, baru
diselesaikan.
Contoh:
Sebuah kawat baja dipancangkan untuk menahan sebuah tiang listrik yang berdiri tegak lurus. Sebuah tongkat didirikan tegak lurus sehingga ujung atas tongkat menyentuh kawat. Diketahui panjang tongkat 2 m, jarak tongkat ke ujung bawah kawat 3 m dan jarak tiang listrik ke tongkat 6 m. Berapa tinggi tiang listrik?
Jawab:
Misalnya, tinggi tiang listrik adalah t sehingga diperoleh perbandingan sebagai berikut.
Gambar:14.jpg
Gambar:15.jpg
Jadi, tinggi listrik adalah 6 cm.

Segitiga-Segitiga yang Kongruen

Pengertian Segitiga yang Kongruen

Gambar:segienam.jpg
Pengubinan pada lantai yang telah kita kenal dapat digunakan untuk memahami pengertian kongruen. Pola pengubinan yang kita gunakan adalah pengubinan bangun segitiga. Perhatikan Gambar disamping Jika dilakukan pergeseran atau pemutaran terhadap salah satu ubin maka segitiga tersebut akan menempati ubin yang lain dengan tepat. Keadaan tersebut menunjukkan bahwa ubin yang satu dengan ubin yang lain mempunyai bentuk sama (sebangun) dan mempunyai ukuran yang sama. Segitiga-segitiga yang mempunyai bentuk dan ukuran yang sama disebut segitiga-segitiga yang kongruen (sama dan sebangun).

Sifat-Sifat Dua Segitiga yang Kongruen

Gambar:sigitiga 7.jpg
Untuk dapat memahami sifat-sifat dua segitiga yang kongruen, perhatikan Gambar diatas ini. Karena segitiga-segitiga yang kongruen mempunyai bentuk dan ukuran yang sama maka masing-masing segitiga jika diimpitkan akan tepat saling menutupi satu sama lain.
Gambar di samping menunjukkan ∆, PQT dan ∆ QRS kongruen. Perhatikan panjang sisi-sisinya. Tampak bahwa PQ = QR, QT = RS. dan QS = PT sehingga sisi-sisi yang bersesuaian dari kedua segitiga sama panjang.
Selanjutnya, perhatikan besar sudut-sudutnya. Tampak bahwa ﮮ TPQ = ﮮ SQR, ﮮ PQT = ﮮ QRS , dan ﮮ PTQ = ﮮ QSR sehingga sudut-sudut yang bersesuaian dari kedua segitiga tersebut sama besar.
Dari uraian di atas. dapat disimpulkan sebagai berikut.
Dua buah segitiga dikatakan kongruen jika dan hanya jika memenuhi sifat-sifat berikut.

  1. Sisi-sisi yang bersesuaian sama panjang.
  2. Sudut-sudut yang bersesuaian sama besar.

Syarat Dua Segitiga Kongruen

Dua segitiga dikatakan kongruen jika dipenuhi salah satu dari tiga syarat berikut.

  1. Ketiga pasang sisi yang bersesuaian sama panjang (sisi, sisi, sisi).
  2. Dua sisi yang bersesuaian sama panjang dan sudut yang dibentuk oleh sisi-sisi itu sama besar (sisi, sudut, sisi).
  3. Dua sudut yang bersesuaian sama besar dan sisi yang menghubungkan kedua titik sudut itu sama panjang (sudut, sisi, sudut).
  • Ketiga Pasang Sisi yang Bersesuaian Sama Panjang (Sisi, Sisi, Sisi)
Dua segitiga di bawah ini, yaitu ∆ ABC dan ∆ DEF mempunyai panjang sisi-sisi yang sama.
Gambar:sigitiga 8.jpg
Gambar:16.jpg
Perbandingan yang senilai untuk sisi-sisi yang bersesuaian menunjukkan bahwa kedua segitiga tersebut sebangun. Karena sebangun maka sudut-sudut bersesuaian juga sama besar, yaitu ﮮ A= ﮮ D, ﮮ B= ﮮ E,dan ﮮ C= ﮮ F.
Karena sisi-sisi yang bersesuaian sama panjang dan sudut-sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF kongruen.
  • Dua Sisi.yang Bersesuaian Sama Panjang dan Sudut yang Dibentuk oleh Sisi-Sisi itu Samar Besar (Sisi, Sudut, Sisi)
Gambar:sigitiga 9.jpg
Pada gambar di atas, diketahui bahwa AB = DE, AC = DF, dan ﮮ CAB = ﮮ EDF. Apakah ∆ ABC dan ∆ DEF kongruen? Jika dua segitiga tersebut diimpitkan maka akan tepat berimpit sehingga diperoleh :
Gambar:17.jpg
Hal ini berarti ∆ ABC dan ∆ DEF sebangun sehingga diperoleh
ﮮA = ﮮD, ﮮB = ﮮ E, dan ﮮC = ﮮE Karena sisi-sisi yang bersesuaian sama panjang, maka ∆ ABC dan ∆ DEF kongruen.

  • Dua Sudut yang Bersesuaian Sama Besar dan Sisi yang Menghubungkan Kedua Sudut itu Sama Panjang (Sudut, Sisi. Sudut)
Gambar:sigitiga 10.jpg
Pada gambar di atas, ∆ ABC dan ∆ DEF mempunyai sepasang sisi bersesuaian yang sama panjang dan dua sudut bersesuaian yang sama besar, yaitu AB = DE, ﮮ A = ﮮ D. Dan ﮮB = ﮮE. Karena ﮮA = ﮮD dan ﮮB =ﮮE maka ﮮC = ﮮF. Jadi. ∆ ABC dan ∆ DEF sebangun. Karena sebangun maka sisi-sisi yang bersesuaian rnempunyai perbandingan yang senilai.

Gambar:18a.jpg
Contoh:

Perhatikan gambar layang-layang pada Gambar. Sebutkan pasangan segitiga-segitiga yang kongruen!
Jawab:
Pasangan segi tiga-segi tiga yang kongruen adalah :
∆ AED dengan ∆ ABE:
∆ DEC dengan ∆ BEC:
∆ ACD dengan ∆ ABC.
a) ∆ AED kongruen dengan ∆ ABE
Bukti; Karena ∆ ABD sama kaki dan AE adalah garis bagi maka diperoleh AD = AB (diketahui)

ﮮ DAE = ﮮ BAE

AE = AE (berimpit)
Maka terbukti bahwa ∆ AED kongruen dengan ∆ ABE. (Sisi, Sudut, Sisi)
b) ∆ DEC kongruen dengan ∆ BEC
Bukti; Karena ∆ BCD sama kaki dan CE adalah garis bagi maka diperoleh CD = CB (diketahui)
ﮮ DCE = ﮮ BCE
CE = CE (berimpit)
Jadi. terbukti bahwaA DEC kongruen dengan L ABE. (Sisi. Sudut. Sisi)
∆ ACD konsruen dengan ∆ ABC

Menghitung Panjang Sisi dan Besar Sudut Segitiga-Segitiga kongruen

Dengan menggunakan sifat-sifat dua segitiga yang kongruen dapat ditentukan sisi-sisi yang sama panjang dan sudut-sudut yang sama besar.
Contoh:
Perhatikan Gambar

Diketahui ∆ KNM kongruen dengan ∆ NLM! Panjang KN = 5 cm, KM = l0 cm, ﮮ NKM = 60'. Tentukan panjang sisi dan sudut yang belum diketahui!
Jawab:
Karena ∆ KNM dan ∆ NLM kongruen maka KM = ML = l0 cm dan NL = KN = 5 cm. Dengan demikian, panjang MN dapat ditentukan dengan menggunakan dalil Pythagoras.
Gambar:19.jpg

Referensi

  • Erlangga
  • Tiga Serangkai